sparkfun,wiic
Release 0.9.1

Jul 14, 2021

Contents:

1 Contents

2 Supported Platforms
3 Structure

4 Dependent Modules
5 Dependencies

6 Documentation

7 Checkout Commands

8 Installation
8.1 PyPilnstallation e e e e e e e e
8.2 LocalInstallation e e e e e e e

9 Table of Contents
9.1 APIReference o i e e e e e
O 1.T QWIIC .+ o o e e e e e e e e e e e

10 Indices and tables
Python Module Index

Index

11

13

15

17
17
17

19
19
19

23

25

27

sparkfun,wiic, Release0.9.1

The SparkFun qwiic python package aggregates all python qwiic drivers/modules to provide a single entity for qwiic
within a python environment. The qwiic package delivers the high-level functionality needed to dynamically discover
connected qwiic devices and construct their associated driver object.

New to qwiic? Take a look at the entire SparkFun qwiic ecosystem.

Contents: 1

https://www.sparkfun.com/qwiic

sparkfun,wiic, Release0.9.1

2 Contents:

CHAPTER 1

Contents

Supported Platforms
Structure

Dependent Modules
Checkout Commands
Installation

Documentation

sparkfun,wiic, Release0.9.1

4 Chapter 1. Contents

CHAPTER 2

Supported Platforms

The gqwiic Python package current supports the following platforms:
» Raspberry Pi
* NVidia Jetson Nano

* Google Coral Development Board

https://www.sparkfun.com/search/results?term=raspberry+pi
https://www.sparkfun.com/products/15297
https://www.sparkfun.com/products/15318

sparkfun,wiic, Release0.9.1

6 Chapter 2. Supported Platforms

CHAPTER 3

Structure

Each gwiic board has an independent driver library that implements the required logic for the specific board. This
driver implementation is structured as a python package that supports standard python package management operations
and tools. Additionally, each driver is deployed in a distinct GitHub repository which provides a central area for
package management and development.

To provide dynamic discovery and instantiation capabilities, the qwiic package imports all the underlying qwiic driver
packages at runtime. As such the qwiic driver packages must be installed prior to using this package. These packages
can be installed manually, or the overall package will install them automatically when using a PyPi based package
manger (aka pip).

sparkfun,wiic, Release0.9.1

8 Chapter 3. Structure

CHAPTER 4

Dependent Modules

To make development and evaluation easer, the modules this package is dependent on are included in this repository
as git submodules. This allows rapid checkout and access to the entire qwiic python ecosystem if needed.

This structure has the following layout:

Qwiic_Py/

+-—— gwiic_i2c/ —-—> Link to the gwiic_i2c_
—submodule repository

\ |-—— __index__ .py

| I*** ... The cross platform I2C bus access driver

\

+——— gwiic/

| |-—— __index___.py

\ +--— ... Package Implementation

\ I*** drivers/

| |——— gwiic_bme280 ——> The gwiic_bme280 submodule

\ |-—— gwiic_micro_oled ——> The gwiic_micro_oled submodule

\ Ifff ... links to gwiic driver submodule repositories

\

+——— README .md

+—-—— setup.py

I*** ...etc

sparkfun,wiic, Release0.9.1

10 Chapter 4. Dependent Modules

CHAPTER B

Dependencies

The qwiic package depends on the qwiic I12C driver: Qwiic_I2C_Py

This package is also dependent on the driver packages contained in the drivers directory.

11

https://github.com/sparkfun/Qwiic_I2C_Py
https://github.com/sparkfun/Qwiic_Py/tree/master/qwiic/drivers

sparkfun,wiic, Release0.9.1

12 Chapter 5. Dependencies

CHAPTER O

Documentation

The SparkFun qwiic package documentation is hosted at ReadTheDocs

13

https://qwiic-py.readthedocs.io/en/latest/index.html

sparkfun,wiic, Release0.9.1

14 Chapter 6. Documentation

CHAPTER /

Checkout Commands

To clone this repository, a standard git clone command will create a local copy of this repository:

’qit clone https://github.com/sparkfun/Qwiic_Py

This will create a local version of this repository, but the submodule directories (drivers/*, and qwiic_i2c/) will be
empty. To clone the git repository and include the submodule contents, use the following command:

’git clone —-recurse-submodules https://github.com/sparkfun/Qwiic_Py.git

15

sparkfun,wiic, Release0.9.1

16 Chapter 7. Checkout Commands

CHAPTER 8

Installation

8.1 PyPi Installation

This repository is hosted on PyPi as the sparkfun-qwiic package. On systems that support PyPi installation via pip,
this package is installed using the following commands For all users (note: the user must have sudo privileges):

sudo pip install sparkfun-gwiic

For the current user:

’pip install sparkfun-gwiic

This process will also install all modules the qwiic package requires for operation, including the needed qwiic driver
packages.

8.2 Local Installation

To install, make sure the setuptools package is installed on the system.

Direct installation at the command line:

’python setup.py install

To build a package for use with pip:

’python setup.py sdist

A package file is built and placed in a subdirectory called dist. This package file can be installed using pip.

cd dist
pip install sparkfun_gwiic_-<version>.tar.gz

17

https://pypi.org/project/sparkfun-qwiic/

sparkfun,wiic, Release0.9.1

18 Chapter 8. Installation

CHAPTER 9

Table of Contents

9.1 API Reference

9.1.1 qwiic

The SparkFun qwiic python package aggregates all python qwiic drivers/modules to provide a single entity for qwiic
within a python environment. The qwiic package delivers the high-level functionality needed to dynamically discover
connected qwiic devices and construct their associated driver object.

New to qwiic? Take a look at the entire [SparkFun qwiic ecosystem](https://www.sparkfun.com/qwiic).

gwiic.create_device (device=None)
Used to create a device object for a specific qwiic device

Parameters device — The I12C address (int), Name or Class name (str) of the device to created, or
selection from listed connected devices (tuple). The device address should be an integer value,
of the hex value. For an example, for an 0x60 (hex) address enter gwiic.create_device(60).

Returns A gwiic device object for the specified qwiic device, using the I2C address that the device
is connected at. If the specified device isn’t found, None is returned.

Return type Object

Example

>>> import qwiic

>>> results = gwiic.list_devices()

>>> print (results)

[(1l6, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'), (16, 'Qwiic Titan GPS',

—'QwiicTitanGps'), (41, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'), (60,

—'Qwiic Micro OLED (64x48)', 'QwiicMicroOled'), (60, 'Qwiic 4m Distance Sensor,,

— (ToF) ', '"OwiicVL53L1X"'), (60, 'SSD1306 Display Driver', 'QwiicSSD1306Driver'),

— (60, 'Qwiic OLED Display (128x32)', 'QwiicOledDisplay'), (61, 'Qwiic Micro OLED,,

— (64x48) "', 'QwiicMicroOled'), (61, 'Qwiic 4m Distance Sensor (ToF)',

—'QwiicVL53L1X'"), (61, 'SSD1306 Display Driver', 'QwiicSSD1306Driver'), (61,
'Qwiic OTED Display (128x32)', 'QwiicOledDisplay')]

(continues on next page)

19

https://www.sparkfun.com/qwiic

sparkfun,wiic, Release0.9.1

(continued from previous page)

>>> mydevicel = gwiic.create_device (results[47])

>>> print (mydevicel)

<gwiic_micro_oled.gwiic_micro_oled.QwiicMicroOled object at 0x743558f0>
>>> mydevice2 = gwiic.create_device (41)

>>> print (mydeviceZ2)

<gwiic_v15311x.QwiicVL53L1X object at 0x743e7bb0>

>>> mydevice3 = gwiic.create_device ("QwiicTitanGps")

Message about Titan GPS package...

>>> print (mydevice3)
<gwiic_titan_gps.QwiicTitanGps object at 0x739c4430>

gwiic.get_devices ()
Used to create device objects for all qwiic devices attached to the computer.

Returns A list of qwiic device objects. If no qwiic devices are an empty list is returned.
Return type list

Example

>>> import qwiic

>>> gwiic.get_devices()
[<gwiic_micro_oled.gwiic_micro_oled.QwiicMicroOled at 0x7608lef0>,
<gwiic_ccs811.QwiicCcs811 at 0x752b78b0>,
<gwiic_proximity.QwiicProximity at 0x752b0el0>,
<gwiic_bme280.QwiicBme280 at 0x752b0a30>]

gwiic.list_available_drivers (device_address=None)
Returns a list of known drivers/packages for qwiic devices.

Parameters device_address — A list with an 12C address or addresses. If no value was given,
the I12C bus will be scanned and the address(es) of the connected qwiic devices will be used.

Returns A list of qwiic drivers/packages associated with the address(es) in the list. Each element
of the list a tuple that contains the following values (Device I12C Address, Device Name, Device
Driver Class Name)

Return type list

Example

>>> import qgwiic

>>> gwiic.list_available_drivers([32])

[(32, 'Qwiic GPIO', 'QwiicGPIO'),

(32, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(32, 'SparkFun Qwiic Joystick', 'OwiicJoystick')]

>>> gwiic.list_available_drivers([61,91])

[(61, 'Qwiic Micro OLED', 'QwiicMicroOled'),

(61, 'OQwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(91, 'Qwiic PCA9685', 'QwiicPCA9685"),

(91, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(91, 'Qwiic CCS811', 'QwiicCcs811')]

gwiic.list_devices ()
Returns a list of known qwiic driver/packages for I2c address(es) of device(s) connected to the I12C bus.

20 Chapter 9. Table of Contents

sparkfun,wiic, Release0.9.1

Returns A list of the qwiic devices associated with the 12C address(es) scanned from the 12C bus.
Each element of the list a tuple that contains the following values (Device I2C Address, Device
Name, Device Driver Class Name) If no devices are attached, an empty list is returned.

Return type list

Example

>>> import gqwiic

>>> gwiic.list_devices()

[(61l, 'Qwiic Micro OLED', 'QwiicMicroOled'),

(61, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X"),
(91, 'Qwiic PCA9685', 'QwiicPCA9685'),

(91, 'Owiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(91, 'Qwiic CCS811', 'OwiicCecs811'),

(96, 'Qwiic PCA9685', 'QwiicPCA9685'),

(96, 'Owiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(96, 'Qwiic Proximity Sensor', 'OQwiicProximity'),

(119, 'Qwiic PCA9685', 'QwiicPCA9685'"),

(119, 'Qwiic 4m Distance Sensor (ToF)', 'QwiicVL53L1X'"),
(119, 'Owiic Mux', 'QwiicTCA9548A"),

(119, 'Qwiic BME280', 'QwiicBme280')]

gwiic.scan ()
Used to scan the I12C bus, returning a list of I2C address attached to the computer.

Returns A list of I2C addresses. If no devices are attached, an empty list is returned.
Return type list

Example

>>> import qgwiic
>>> [2]: gwiic.scan()
[61, 91, 96, 119]

9.1. API Reference 21

sparkfun,wiic, Release0.9.1

22 Chapter 9. Table of Contents

cHAaPTER 10

Indices and tables

* genindex
* modindex

e search

23

sparkfun,wiic, Release0.9.1

24 Chapter 10. Indices and tables

Python Module Index

gwiic, 19

25

sparkfun,wiic, Release0.9.1

26 Python Module Index

Index

C

create_device () (in module gwiic), 19

G

get_devices () (in module gwiic), 20

L

list_available_drivers () (in module gwiic), 20
list_devices () (in module gwiic), 20

Q

qwiic (module), 19

S

scan () (in module gwiic), 21

27

	Contents
	Supported Platforms
	Structure
	Dependent Modules
	Dependencies
	Documentation
	Checkout Commands
	Installation
	PyPi Installation
	Local Installation

	Table of Contents
	API Reference
	qwiic

	Indices and tables
	Python Module Index
	Index

